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QUANTITY ADJUSTMENTS   IN  RESOURCE ALLOCATION; 

A  STATISTICAL  INTERPRETATION 

Kenneth J.  Arrow 

1.    Introduction and Summary. 

Resource allocation is  part of the general  theory of constrained 

optima.     Any method  of successive approximation seeks to approximate 

a solution of the Lagrangian conditions   (if we  ignore non-negativities 

and the possibility of slack in the constraints). 

The following notation is  used: 

(N.l)    x  is a column vector of n decision variables; 

f (x)   is  the objective functim ,   to be maximized; 

g{x)   is  a  column vector function defining constraints/ 

specifically,  g(x)   =  0. 

df/aj; 

f      is the gradient of x,  the row vector with components 

g    is the matrix of gradients  of the constraint functions,  with 

components   (ag./ax.) ; 

primes denote transpose. 

Then the optimization problem is, 

(1)    maximize f (x)   subject to g(x)   = 0. 

If the matrix g    has  full row rank,   then the solution to   (1) 

satisfies the Lagrangian conditions,  namely,   there exists a  row 

vector p such that. 

Acknowledgements   for partial  support   to contract N00014-67-A-0298- 
0019 between  the Office of Naval  Research and  Harvard university. 
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(2)   fx 
+ pgx = o- 

(3)    g(x)   = 0. 

In the standard discussion of decentralized resource allocation, 

attention is concentrated upon adjustments  in  the Lagrange parameters, 

p.     At each stage,   an approximation to p is given.     Then x is 

chosen to satisfy   (2)?   this  can be interpreted as  choosing x  to   maximize, 

(4) L = f(x)   + p g(x), 

if f (x) and g(x) are assumed concave.  However, unless p is already 

that associated with the constrained optimum, (3) will not be 

satisfied. The deviation of g(x) from 0 is used to guide changes in 

p.  A specific adjustment process in differential equation form is 

suggested by interpreting g. (x) as the excess supply of primary 

factor i when the productive activities are determined by the decision 

variables x. Then we wish to lower p. if g. (x) > 0 and raise it ri    i 

otherwise? specifically, the adjustment process might take the form, 

(5) p = - g(x), 

where the dot denotes differentiation with respect to time. 

This process will in fact converge to the constrained optimum 

under suitable hypotheses, which we will not investigate here 

[2, 70-71, 84-85],  The idea is standard in the theory of market 

socialism.  It is usually defended on the grounds that, not only 

dops it converge, but it i* also informationally economical. At 

each stage, the decision on x requires knowledge only of the gradients 

of f (x) and g(x) (which can be interpreted as marginal productivities 

and marginal input requirements). The decision to adjust p, in 

turn, requires only the simple reflection of the x-decisior on 



^„^—^ ™-- mmß^-i^i m -   -^ -mmmmrn. mm~* ' -mm * .^^„^...p.....   , ,       —   

- 3  - 

resource  limitations  through g(x). 

Marglin  [6]   challenged  the view that price adjustments have 

any unique virtues.     He considered a very simple ca?e,  with one 

resource:    decision variables were taken to be the allocations of 

the resource to different uses,  sc that, 

(6) g(x)   =r - r x   , 
j 

where r is the total resource availability, and af/dx. can be 

interpreted as the marginal productivity of the resource in its j 

use.  In the price adjustment process, satisfaction of (2) implies 

that all the marginal productivities are equal throughout the 

adjustment process.  Marglin suggested instead that at each stage 

the allocation x be chosen so as to be feasible to satisfy (3) ). 

Then, if the allocation is not optimal, (2) will not be satisfied. 

He suggested that each x. be adjusted so as to increase L, i.e., 

(7) x = L', 
x 

where L is defined by   (4);   in computing L as a  function of x,   p is 

to be so chosen that  feasiUlity is maintained when x  is adjusted in 

accordance with   (7). 

In his special case,  Marglin argued that  the proposed quantity 

adjustment system is guaranteed to converge  and that  the amount of 

information transmitted at  each stage is comparable  to that in the 

price adjustment system. 

One interesting implication of the Marglin process  is the 

adjustment  equations  can be  stated in statistical  terminology. 

MMMMM mtmmmimmimmmm 
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Specifically, (7) turns out to say that x. should be adjusted in 

proportion to the difference between the marginal productivity of 

the resource in its j  use and the average marginal productivity 

of the resource in all uses.  Further, the rate of increase of the 

objective function is proportional to the variance of the marginal 

productivities, which, naturally, falls to zero when (2) is satisfied. 

Do these conclusions generalize to the case of many resources? 

In particular, what is the generalization of the "statistical" 

interpretation of the Marglin process? 

Actually, the notion of quantity adjustments had appeared 

earlier in studies of methods of approximating constrained optima; see 

Forsythe [4] and Arrow and Solow  [3, Section 3] .  Their interest 

lay rather in the fact that convergence was valid under less stringent 

conditions than in questions of informational economy.  However, 

the results developed earlier can be reinterpreted to give rise to 

a generalized statistical interpretation. 

Specifically, the tentative prices and the quantity adjustments 

in a quantity-adjustment process can be thought of as determined by 

a regression.  Each "observation" is taken to correspond to one 

component of the decision vector.  For the j  observation, the value 

of the dependent variable is taken to be df/dx., while the value of 

the i a independent variable is ag./dx..  I.e., given any tentative 

values for the decision variables, the marginal gains to the different 

decision variables are regressed against the marginal inputs. The 

regression coefficients can then be interpreted as the (tentative) 

I——ifc^ m 
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prices, while the residuals in the regression are the rate of 

adjustment of the decision variables.  Finally, the rate of growth 

of the objective function is precisely the square of the standard 

error of estimate multipled by the number of decision variables. 

In section 2,  the Marglin model is reviewed in the present 

language.  In section 3, the generalization to any number of resources 

is given, and the results in the preceding paragraph proved.  In 

section 4, some comments are made relating the quantity adjustment 

process to decentralization and informational economy. 

2.  The Marglin Quantity Adjustment Process. 

We reexamine Marglin's model in somewhat more general form. 

He assumed that f(x) was additively separable, an issue important for 

decentralization (see section 4 below) but not necessary to his main 

results. 

If g(x) has the special form (6) ard if we insist that the 

resource allocation be feasible at every moment of the adjustment 

process, i.e., that (3) hold throughout, then we are requiring that, 

(8)    E x.(t) = r. 

j  ^ 

This  condition will hold if and only if the following two otatenents 

are valid: 
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(9)   E x (0) = r; 
j 

(10) T,  x (t) = 0. 
j 

From (6),   the Lagrangian can be written, 

(11) L(x, p) = f(x) + p (r - E x ). 
j 

where p is now a scalar,   so that, 

äL/öx    =   (af/dx.)   - p, 

and the adjustment process  for any component x.   is defined by, 

(12) x.   =   (äf/ax.)   - p. 

To make sure that (10) holds, p has to be selected appropriately 

at any time t.  Substitute (12) into (10), and solve for p. 

(13) p = E (af/ax )/n, 
j 

i.e., p is the average marginal productivity of the resource in all 

uses. 

Then (12) asserts that the rate of change of the resource 

allocation to any use is the difference between its marginal productivity 

in that use and the average over all uses. 

We will also compute the rate of growth of the objective function 

itself. 

2 
f = T.  (af/ax )[ (af/ax ) - p]= n s , 

2 
where s  is the sample variance of the marginal productivities about 

their mf an. 

So long as the Lagrange condition (2) is not satisfied, the 

^^MMM^t^i^MM^MXM—IM—MW^HJMJMMM^mM.I ■■^—.  
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2 
marginal productivities will not all be equal.  Hence s will be 

positive, and therefore so will f.  It is clear,  then, that the 

process can only come into equilibrium at a point where (2) is 

satisfied as well as (3).  Since the path is a path of resource 

allocations, it must be bounded and therefore must have a limit 

point.  It is easy to see that f = 0 at any limit point, and from 

this it can be shown that an adjustment path starting from any 

initial point which is feasible, i.e., satisfies (9), will converge 

to a point satisfying (2) and (3). 

Remark; The adjustment process (7) is arbitrary with regard 

to the choice of adjustment speeds.  The rate of change of any 

particular x. could be thought of as proportional to aL/dx., rather 

than equal to it.  However, in that case, a suitable change of units 

in measuring x. will rec^.ore the form given. 

3.  The General Case Without Non-negativity or Slack. 

Let us revert to the general constrained maximization problem. 

We follow the discussion in [3, section 3] but reinterpret the results, 

We now wish to require that (3), the feasiHLity condition, hold 

throughout the adjustment process and therefore as an identity in 

time. 

(14) g[x(t)] = 0. 

(14) will hold for all t if and only if (a) it holds for t = 0, 

and (b) its derivative with respect to time is identically zero. 

(15) g[x(0)] = 0; 

(16) d g[x(t)]/dt = 0. 

HHMMMMMMIMI kHBM»^^- 
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By the chain rule,   (16)  becomes, 

(17) g    x  =  0. 
^x 

From (4), the definition of L, 

L = f + P g • 
X     XX 

Hence, the adjustment process for the resource allocation (7) is, 

(18) x = f' + g' p'. 
xx 

The vector p is to be chosen, at any time t, so that (17) holds. 

Write (18) as, 

(19) f' = - g' p' + x. 
x     x 

We are, then, seeking a linear combination of the columns of a 

matrix, - g', such that the difference between a given vector, f, 

and the linear combination is orthogonal to every column of the given 

natrix (note that the rows of g are the columns of g').  This is 
x ^x 

precisely the defining characteristic of the vector of regression 

coefficients estimated from a sample, where the columns of the matrix 

represent different independent variables and the given vector 

represents the dependent variable. 

In more detail, let a regression of y be fitted to variables 

z.,...,z .  Let u. be the residual in the j  observation.  Then the 
i     m       ] 

linear regression model asserts that, for each j (=l,...,n), 

y: ^ 6i zii + V 

where ß. is the regression coefficient of z., z.. is the j  observation 

on the independent variable z., and u. is an error term.  Let b. 
13 i 

be the least squares estimate of g. and v. the jth estimated residual. 

B^mmmmmmm***—- . 
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Then, by definition of estimated residual, 

y. =vb. z.. +v., 

or, in matrix-vector notation, 

(20) y = Z b + v. 

The estimates b satisfy the normal equations, 

Z'Z b = Z'y, 

which can be written, 

Z'(y-Zb) = 0, 

or, from (20), 

(21) Z* v = 0. 

The analogy is now obvious.  In (20) and (21) replace y by 

f, Z by - g', b by p', and v by x; then (20) translates into (19) 

and (21) into (17) (after multiplying by -1). 

Hence, at any stage t, there is an approximation, x(t), to the 

optimal allo ation. At this value of the decision vector, compute 

the marginal benefit vector, f' , and the marginal input vectors for 

all inputs  forming the matrix - g*.  Take the regression, across 

decision variables, of marginal benefits on marginal inputs. The 

estimated regression coefficients are the approximation at stage t 

to the resource prices; the calculated .-eslduals are the rates of 

adjustment of the individual decision variables. 

Further, we can easily relate the rate of increase of the 

objective function to the standard error of the residuals.  With the 

aid of (17) and (19), we have. 

ma^mt^*,,, 
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f = fx x = (x' - p gx) x = 1 x|  - p 9xx = | x|   = n sE. 

where, 

sE = [(E x.2)/n]1/2, 

is the standard error of estimate (since the regression has no 

constant term, the deviations are taken fron zero rather than from 

the sample mean). 

As in the simple Marglin case, the objective function continues 

to increase so long as the regression does not fit perfectly. The 

path cannot come to an equilibrium unless the Lagrange conditions (2) 

are staisfied.  Suppose the adjustment path is bounded.  Then by 

standard use of Lyapunov's second method (see [5, pp. 7-9] or [1, 

Chapter 11, section 41), with f(x) as the Lyapunov function, x(t) 

must converge to a limit at which condition (2) holds; (3) has been 

required to hold for all points on the path.  Under suitably concavity 

conditions (or even quasi-concavity conditions), conditions (2-3) 

are sufficient as well as necessary for a constrained optimization. 

When will the adjustment path be bounded? Let, 

F = { x| f(x) S f[x(0)]|. 

Since f[x(t)] is increasing x(t) must belong to F for all t.  Hence, 

the boundedness of F is sufficient for that of the path x(t). 

Alternatively, it has been insured by construction that x(t) 

is feasible for all t.  If the set of feasible resource allocations 

is bounded, then again the path must be bounded. 

tmtmmm mtm 
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Theorem.  Let g have full row rank. Then the quantity adjustiuent 

process defined as a path x(t), p(t) satisfying the conditions, 

(a) g[x(t)] = 0. 

(b) x = L^, 

where L = f (x) + p g(x), is well defined if the initial point 

satisfies the condition g[x{0)] = 0.  If, for each x = x(t), the 

regression across decision variables of the components of the grcidient 

of f on the corresponding components of the 

gradients of the constraint functions g.(x) (i=l, ,m) is taken, 

then the estimated regression coefficients are the components of 

p(t), and the estimated residuals are the components of x.  If s 
E 

2 
is the standard error of estimate (about zero), then f = n s,, . 

E 

If either the set |x f(x) i f[x(0)]\ or the feasible set, 

Ix g{x) = Ol, is bounded, then the path converges to a point that 

satisfies the Lagrangian condition, L = 0, as well as the feasibility 

condition, g(x) =0. 

4. Observations on Decentralization, Information, and Computation. 

Let us take the case most favorable to the possibility of 

decentralization, that in which both the objective function and the 

constraint functions are additively separable, i.e., 

(22)  f(x) = S fj(x ), g(x) = E gj (x ). 

j j 

Here, x. might be interpreted as an activity level, and, for given j, 

the functions f-'(x.) and g. (x.) (i=l,...,m) define the final output 

n^M—liiltMM«—lli^rl^lillMtMi(..»r i    .i   .     i  -..iifli i inmiiJiMiMilMI—ÜlMf 
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and intermediate outputs (or inputs, with sign reversed) of a 

nonlinear activity.  In that case, the information in the j 

"observation", i.e., öf/ax, and ög./öx. (i=l,...,m) is solely a 

function of x. and hence car be determined by the j  activity 

manager without other information. Therefore, the information 

can be transmitted to the cental authority.  Indeed, in some sense, 

the information transmitted is less expensive than the demands 

and supplies needed under a price adjustment mechanism, for the 

latter requires optimization and hence global knowledge by the 

activity manager, whi le the former raquires only information on 

the production structure of the j  activity in the neighborhood of 

the present point. 

Hence, from the information point cf view, Marglin's thesis is 

valid in the more general case.  The information to be transmitted 

by the activity managers is not greater and may even be less in the 

quantity adjustment process than in the price adjustment process. 

But a different valuation must be made when we consider computing 

costs at the center.  In the price adjustment model, all that is 

needed is aggregate excess demand; this is computed by simply 

adding up the excess demands of the individual activities.  In the 

quantity adjustment model, per contra, the ctrt-ral authority has to 

fit a regression, a much more complicated operation.  Indeed, it 

involves, among other steps, the inversion of a matrix whose order 

equals the number of resources. The Marglin model, which involves 

only one resource, thus gives an unrepresentatively favorable 

MM^M 
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Impression of the computational problem, since the regression 

estimation reduces to computing mean. 

It should also be noted that any commodity which enters into 

the production of another commodity is a "resource" from this point 

of view; that is, the resources which are constrained include both 

primary resources and intermediate goods.  Thus, the number of 

resources is apt to be almost the same as the number of commodities. 

These cursory remarks do leave some issues unresolved.  For 

example, if the production structure is marked by constant coefficients 

(as in a Leontief structure) then the inversion need only be done 

once, not repeated at each iteration.  It is clear that we need a 

more sophisticated theory of computational and informational efficiency, 

in which a priori knowledge of production and utility structures is 

used to reduce the need for calculation.  But if we stick to the 

conventional rules for evaluating alternative optimal resource 

allocation mechanisms, in which the central authorities know no 

more of the activity structures than what is transmitted to them, the 

quantity adjustment process appears to be inferior in terms of the 

computational load on the center, though not in terms of the costs 

of information transmission. 

■■MMMMaai 
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